$a_{1} d$ similar, but the x MATH 5 C -TEST 4 component for d langer Chapter 16
Spring 24 vi
100 POINTS
NAME: \qquad
Show all work neatly with complete explanations.
(1) Match the equation to the vector field plot. Vector fields have been uniformly scaled in order to be seen more clearly. Two plots do not have a match.
(8pts)
a) $\vec{F}(x, y)=\langle x, x\rangle \ldots$
b) $\vec{F}(x, y)=\langle 4 \cos (x+y), x\rangle-2$

2	2
>1	

c) $\vec{F}(x, y)=\left\langle 10, \frac{1}{4}\left(x^{2}+y^{2}\right)\right\rangle$

d) $\vec{F}(x, y)=\langle 6 x, x\rangle-3$

l

(2)

(5)

(3)

(6)

(2) Find the work done by the vector field $\vec{F}(x, y, z)=\langle 2 x,-x-z, y-x\rangle$ in moving an object along the curve $\vec{r}(t)=\left\langle t^{2}, t^{2}-1,3\right\rangle ; 0 \leq t \leq 3$ using any appropriate method. Direct (y
(10 points)

$$
\begin{gathered}
\vec{F}(t)=\left\langle 2 t^{2},-t^{2}-3, t^{2}-1-t^{2}\right\rangle \\
\vec{r}^{\prime}=\langle 2 t, 2 t, \quad 0\rangle \\
\vec{F} \cdot \vec{\sigma}^{\prime}=4 t^{3}-2 t^{3}-6 t=2 t^{3}-6 t
\end{gathered}
$$

$$
\begin{aligned}
\text { work } & =\int_{0}^{3}\left(2 t^{3}-6 t\right) d t \\
& \left.=\frac{1}{2} t^{4}-3 t^{2}\right]_{0}^{3} \\
& =\frac{81}{2}-27=\frac{27}{2}
\end{aligned}
$$

(3) Verify Green's Theorem is true for the line integral $\oint_{C} x^{2} d x-x^{3} y d y$ where C is the piecewise curve consisting of the parabola $y=x^{2}$ for $(-1,1)$ to $(1,1)$ and the line segment from $(1,1)$ to $(-1,1)$. (That is, do the problem directly and then using Green's theorem).
(24 points)

directly

$$
C_{1}
$$

$\left\{\begin{array}{l}x=t \\ y=t\end{array}\right.$
$c_{2} \quad x=1-2 t$
$y=t^{2}$
$y=1_{6 \leq t \leq 1}$
$-1 \leq t \leq 1$
$\vec{F}=\left\langle(1-2 t)^{2},(1-2 t)^{3}\right.$
$\vec{F}=\left\langle t^{2},-t^{5}\right\rangle$
$\vec{\sigma}=\langle-2,0\rangle$
$\int_{-1}^{1}\left(t^{2}-2 t^{6}\right) d t \quad \int_{0}^{1}-2(1-2 t)^{2} d t \quad \begin{aligned} & u=2-2 t \\ & d u=-2 d t\end{aligned}$
$\left.\left.\frac{t^{3}}{3}-\frac{2}{7} t^{7}\right]_{-1}^{1} \quad \frac{(1-2 t)^{3}}{3}\right]_{0}^{1}$
$2\left(\frac{1}{3}-\frac{2}{7}\right)=\frac{2}{21}$
$-\frac{1}{3}-\frac{1}{3}=-\frac{2}{3}$
$\Rightarrow \frac{2}{21}+\frac{-2}{3}=\frac{-12}{21}=\frac{-4}{7}$

Greens

$$
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=-3 x^{2} y-0
$$

$$
\begin{aligned}
& \text { Greens } \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=-3 x^{2} y-0 \\
& \left.\int_{C} \vec{C} \cdot \vec{r}=\iint_{P_{1}}^{1}-3 x^{2} y d A=\int_{-1}^{1}-3 x^{2} y d y d x=\int_{-1}^{1}-3 x^{2} \frac{y^{2}}{2}\right]_{x^{2}}^{1} d x
\end{aligned}
$$

$$
\begin{aligned}
=\int_{-1}^{1}-\frac{3}{2} x^{2}\left(1-x^{4}\right) d x=-\frac{3}{2} \int_{-1}^{1}\left(x^{2}-x^{6}\right) d x=-\frac{3}{2}\left(\frac{x^{3}}{3}-\frac{x^{7}}{7}\right]_{-1}^{1} \\
-3 \frac{8}{1}=-4
\end{aligned}
$$

$$
-\frac{3}{2} \cdot \frac{8}{21}=\frac{-4}{7}
$$

(4) Evaluate the flux integral $\iint_{S} \vec{F} \bullet d \vec{S}=\iint_{S} \vec{F} \bullet \vec{n} d S$ where $\vec{F}(x, y, z)=\langle-y, x, 3 z\rangle$ and S the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ below $z=4$, positively oriented. (Note: this is NOT a closed surface)

$$
\text { S: } \begin{aligned}
& z=g(x, y)=\sqrt{x^{2}+y^{2}} \\
& z-g(x, y)=\underbrace{z-\sqrt{x^{2}+y^{2}}}_{G(x, y(z)}=0 \\
& \vec{\nabla} G=\left\langle\frac{-x}{\sqrt{x^{2}+y^{2}}} \frac{-x}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle \\
& \vec{F}=\left\langle-y, x, 3 \sqrt{x^{2}+y^{2}}\right\rangle \\
& \vec{F} \cdot \vec{\nabla} G=3 \sqrt{x^{2}+y^{2}} \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot \vec{\nabla} G d A \\
&=\iint_{D} 3 \sqrt{x^{2}+y^{2}} d A \\
&=\int_{0}^{2 \pi} \int_{0}^{4} 3 r^{2} d r d \theta \\
&=2 \pi \cdot 4^{3}=128 \pi
\end{aligned}
$$

(12 points)

(5) Given $\vec{F}(x, y, z)=-y^{2} \vec{i}+x \vec{j}+z^{2} \vec{k}$ and C is the curve of intersection of the plane $z=2-y$ and the cylinder $x^{2}+y^{2}=1$ oriented in the positive direction, find $\int_{C} \vec{F} \bullet d \vec{r}$ using any appropriate method. Explain

Using Stokes'

$$
\begin{aligned}
& \int_{c} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S} \\
&=\iint_{D}(c u r l \vec{F} \cdot \vec{\nabla} G) d A \\
&
\end{aligned}
$$

Compute Curl \vec{F}

surface

$$
\begin{aligned}
& s: z=z-y \\
& \underbrace{G}_{G+y-z}=0 \\
& \vec{\nabla} G=\langle 0,1,1\rangle
\end{aligned}
$$

$$
\begin{aligned}
\int_{C}^{\text {So }} \vec{F} \cdot d \vec{r} & =\iint_{D}(1+2 y) d A \\
& \left.=\int_{0}^{2 \pi} \int_{0}^{1} r+2 r^{2} \sin \theta\right) d r d \theta
\end{aligned}
$$

$$
=\int_{0}^{2 \pi}\left(\frac{1}{2}+\frac{2}{3} \sin \theta\right) d \theta
$$

$=1$
(6) Given the vector field $\vec{F}(x, y)=\left\langle 2 x+y^{2}, 2 x y+1\right\rangle$ piecewise smooth path C given by a quarter circle of radius 2 , traveled from $(0,-2)$ to $(2,0)$, followed a line segment from $(2,0)$ to $(4,-2)$ as shown

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x+y^{2} \quad 16+16-2 \\
& f(x, y)=x^{2}+x y^{2}+c(y) \\
& \frac{\partial f}{\partial y}=2 x y+c^{\prime}(y)=2 x y+1 \\
& C^{\prime}(y)=1 \\
& c(y)=y+c
\end{aligned}
$$

a) Find the potential function $f(x, y)$ such that $\vec{\nabla} f(x, y)=\vec{F}(x, y)$ and use it to compute $\int_{C} \vec{F} \cdot d \vec{r}$

$$
f(x, y)=x^{2}+x y^{2}+y+c
$$

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =f(4,-2)-f(0,-2) \text { by Fundamental Thm of line int. } \\
& =30+2=32
\end{aligned}
$$

b) Find $\int_{C} \vec{F} \cdot d \vec{r}$ using a different method. Explain

Can do it directly in two pieces, or choose a simple- path since \vec{F} is conservative segment from $(0,-2) \rightarrow(4,-2)$

$$
\begin{aligned}
& x=4 t \\
& y=-2 \\
& y \leq t \leqslant 1
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}=\langle 8 t+4,-16 t+1\rangle \\
& \vec{r}^{\prime}=\langle 4,0\rangle \\
& \left.\int_{0}^{1} 4(8 t+4) d t=16 t^{2}+16 t\right]_{0}^{1}=32
\end{aligned}
$$

(7) Evaluate the flux integral $\iint_{S} \vec{F} \bullet d \vec{S}=\iint_{S} \vec{F} \bullet \vec{n} d S$ where $\vec{F}(x, y, z)=\left\langle x, y, z^{2}-1\right\rangle$ and S closed, positively oriented surface of the solid bound by the cylinder $x^{2}+y^{2}=25$ and the planes $z=0 ; z=1$

Divergence Theorem

$$
\begin{aligned}
d i v \bar{F} & =1 r 1+2 z=2+2 z \\
\iint_{S} \vec{F} \cdot d \vec{s} & =\iint_{E} d \omega \vec{F} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{5} \int_{0}^{1}(2+2 z] d z r d r d \sigma \\
& \left.=\int_{0}^{2 \pi} \int_{0}^{5} 2 z+z^{2}\right]_{0}^{1} r d r d \sigma \\
& =\int_{0}^{2 \pi} \int_{0}^{5} 3 r d r d \theta \\
& \left.=\int_{0}^{2 \pi} \frac{3}{2} r^{2}\right]_{0}^{5} \\
& =2 \pi \frac{75}{2}=75 \pi
\end{aligned}
$$

MATH 5C - TEST 4

Chapter 16 v2
Spring 2024
100 POINTS
NAME: \qquad
Show all work neatly with complete explanations.
(1) Match the equation to the vector field plot. Vector fields have been uniformly scaled in order to be seen more clearly. Two plots do not have a match.
(8pts)
\longrightarrow
3
b) $\vec{F}(x, y)=\left\langle y^{3}, x\right\rangle-5$
d) $\vec{F}(x, y)=\langle y, x\rangle$
 b, d similar
(1)

(4)

(2)

(5)

(6)

(2) Given $\vec{F}(x, y)=\left\langle x^{2}, y^{2}\right\rangle$ and the piecewise smooth path C given by the quarter circle of radius 2 , traveled from $(2,0)$ to $(0,2)$, followed by the line segment from $(0,2)$ to $(-1,1)$ (30 points)

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=x^{2} \\
& f(x, y)=\frac{1}{3} x^{3}+c(y) \\
& \frac{\partial f}{\partial y}=c^{1}(y)=y^{2} \\
& c(y)=\frac{1}{3} y^{3} \\
& f(x, y)=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}
\end{aligned}
$$

a) Find the potential function $f(x, y)$ such that $\vec{\nabla} f(x, y)=\vec{F}(x, y)$
b) Find $\int_{C} \vec{F} \cdot d \vec{r}$ using two different methods. Name methods.

1) Using Funcemental the $\int_{c} \vec{F} \cdot d \vec{r}=f(-1,1)-f(2,0)=\frac{-8}{3}$
2) Since \vec{F} conservative, we can use a simpler p th

$$
\begin{aligned}
& C_{3} \text { : Line segment }{ }^{2} \\
& \vec{F}=\left\langle(2-3 t)^{2}, t^{2}\right\rangle \\
& \vec{r}^{\prime}=\langle-3,1\rangle \\
& \vec{F} \cdot \vec{r}{ }^{\prime}=-3(2-3 t)^{2}+t^{2} \\
& \int_{0}^{1}-3(2-3 t)^{2} \perp t+\int_{0}^{1} t^{2} d t \\
& u=2-3 t \\
&\left.\frac{(2-3 t)^{3}}{3}\right]_{0}^{1}+\frac{1}{3} \\
& \frac{-1}{3}-\frac{8}{3}+\frac{1}{3}:=\frac{8}{3}
\end{aligned}
$$

3)Can also do directly

Or directly

$$
S_{u_{1}}+C_{c_{2}}
$$

(3) Evaluate the flux integral $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \bullet \vec{n} d S$ where $\vec{F}(x, y, z)=\langle x, x, z\rangle$ and S is the closed surface formed by the plane $2 y+z=4$ the coordinate planes. (outward unit normals), two ways: $\quad x=3$
(a) directly, and
(16 points)
(b) using an appropriate theorem. (name the theorem)

Divergence Thy

Directly

$$
\begin{aligned}
& \vec{F}=\langle 3,3, z\rangle \\
& \vec{\nabla} G=\langle 1, \vec{F}, 0\rangle \\
& F F l u x=\iint_{0} 3 d A=3(100 a) \\
&=3 \cdot \frac{1}{2} \cdot 2 \cdot 4 \\
&=12
\end{aligned}
$$

* Need all 5 sides.

$$
\begin{aligned}
& \operatorname{div} \overrightarrow{\vec{F}}=2 \\
& \iiint_{E} 2 d V=2 \text { volume } \\
& =2 \cdot \frac{1}{2} \cdot 4 \cdot 2 \cdot 3
\end{aligned}
$$

$$
24
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Bottom } \\
z=0 \\
\frac{T o p}{z=\langle y, 0\rangle} \\
\frac{\text { Top }}{z=4-2 y}
\end{array} \\
& \vec{F}=\langle x, x, 0\rangle \\
& -\vec{\nabla} G=\langle 0,0,-1\rangle \\
& \underbrace{2+2 y-4}_{6}=0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \int_{0}^{2} 2 x+4-2 y / y . y^{2} \\
& \left.\int_{0}^{3} \int_{0}^{3}-3 x y+4 y-y^{2}\right]_{d}^{2} \\
& \int_{0}^{3} 4 x+4 d x \\
& \left.2 x^{2}+4\right]_{0}^{3} \\
& 18+12=30
\end{aligned}
$$

Answers to (a) and (b)
should match.
(4) Given $\vec{F}(x, y, z)=2 x y^{2} z \vec{i}+2 x^{2} y z \vec{j}+\left(x^{2} y^{2}-2 z\right) \vec{k}$ and C is the curve given by $\vec{r}(t)=\langle\cos t, \sin t, \sin t\rangle, 0 \leq t \leq 2 \pi$ find $\int_{C} \vec{F} \cdot d \vec{r}$ using any appropriate method. (name method) Show all steps of integration
(12 points)
Directly $\vec{F}=\left\langle 2 x y^{2} z, 2 x^{2} y z, x^{2} z^{2}-2 z\right\rangle$

$$
\begin{aligned}
& \vec{F}=\left\langle 2 \cos t \sin ^{3} t, 2 \cos ^{2} t \sin ^{2} t, \cos ^{2} t-\sin ^{2} t-2 \sin t\right\rangle \\
& \vec{r}^{\prime}=\langle-\sin t, \cos t, \cos t\rangle \\
& \left.\vec{F} \cdot \vec{r}^{\prime}=-2 \cos t \sin ^{4} t+2 \cos ^{3} t \sin ^{2} t+\cos ^{3} t \sin ^{2} t-2 \cos t \sin t\right) \\
& =-2 \cos t \sin ^{4} t+3 \cos ^{3} t \sin ^{2} t-2 \cos t \sin t \\
& \int_{c} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi}-2 \cos t \sin ^{4} t d t+\int_{0}^{2 \pi} \cos ^{3} t \sin ^{2} t d t-2 \int_{0}^{2 \pi} \cos t \sin t d t \\
& u=\sin t \quad+\int_{0}^{2 \pi} \cos t\left(1-\sin ^{2} t\right) \sin ^{2} t d t \quad u=\sin t \\
& \left.-2 \frac{\sin 5 t}{5}\right]_{0}^{2 \pi} \quad \int_{0} \cos \left(1-\sin ^{2} t\right) \\
& 0+\int_{0}^{0} u^{2}-u^{2}-\frac{\left.\sin ^{2}+\right]_{0}^{2 \pi}}{2} \\
& 0+0 \quad 0=0
\end{aligned}
$$

Stoke:
curl \vec{F} :
\vec{F} conservative, line integer plarsund
 closed' p eth is \rightarrow.
(5) Find the work done by the vector field $\vec{F}(x, y)=\langle\sin x \cos y, x y+\cos x \sin y\rangle$ in moving an object around a triangular path along $y=2 x$ from $(0,0)$ to $(1,2),(1,2)$ to $(0,2)$ and returning to $(0,0)$.
(12 points)
(use any appropriate method)
Green's Theorem

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=y-\sin x \sin y \\
& \frac{\partial P}{\partial y}=-\sin x \sin y \\
&\left.\int_{C} \vec{F} \cdot d \vec{v}=\int_{0} y d A=\int_{0}^{2} \int_{0}^{\frac{1}{2} y} y d x d y=\int_{0}^{2} \frac{1}{2} y^{2} d y=\frac{1}{6} y^{3}\right]_{0}^{2}=\frac{4}{3}
\end{aligned}
$$

$\frac{\text { Directly Long liny }}{c_{i}:(0,0) \rightarrow(1,2)}$

$$
\begin{aligned}
& C_{1}:(0,0) \rightarrow(1,21 \\
& x=t \\
& y=2 t \\
& 0 \leq t \leq 1 \\
& \begin{array}{l}
\vec{F}=\sin t \cos 2 t, 2 t^{2}+\cos t \sin 2 t \\
\vec{r}^{e}=\langle 1,2\rangle \\
\int_{0}^{1} \sin t \cos 2 t+4 t^{2}+2 \cos t \sin 2 t
\end{array} \\
& \left.\int_{0}^{1} \sin t\left(2 \cos ^{2} t-1\right)+4 t^{2}+4 \cos ^{2} t \sin t\right) d t \\
& C_{2}:(1,2) \rightarrow(0,2) \\
& x=1 \text {-t } \\
& y=2 \\
& r^{r^{\prime}}=\langle-1,0\rangle \\
& \stackrel{\rightharpoonup}{F}=T \sin (1-t), \cos 2, \ldots\rangle \\
& \begin{array}{c}
-\int_{0}^{1} \sin (1-t) \cos 2 d t \\
-\cos (1-t) \cos 2]_{0}^{1}
\end{array} \\
& C_{3}:\langle 0,2\rangle \rightarrow\langle 0,0\rangle \\
& \int_{0}^{1}\left(6 \cos ^{2} t \sin t-\sin t+4 t^{2}\right) d t \\
& \left.-6{\frac{\cos _{5}^{3}}{3}}^{3} \cdot \cos t+\frac{4}{8} t^{2}\right]_{2}^{1} \\
& x=0 \\
& y=2-2 t \\
& \frac{-6 \cos ^{3} 1}{3}+\cos 1+\frac{4}{3}-(-2+1) \\
& -\frac{6 \cos ^{3}}{3} 1+\cos 1+\frac{4}{3} \times 1 \\
& \begin{array}{l}
\left.\vec{r}^{\prime}=T 0,-2\right\rangle \\
\vec{F}=\langle 0, \sin (2-2+1\rangle
\end{array} \\
& \begin{array}{l}
\text { F } \\
\int_{0}^{1}-2 \sin (2-\alpha t) d t
\end{array} \\
& -\cos (\alpha-\alpha+1]_{0}^{\prime} \\
& -1+\cos 2
\end{aligned}
$$

(6)
(12 points)
Find the work done by the vector field $\vec{F}(x, y, z)=\langle y, z, x\rangle$ in moving an object along the curve $\vec{r}(t)=\left\langle\sqrt{t}, \frac{1}{\sqrt{t}}, t\right\rangle ; \quad 1 \leq t \leq 9$ using any appropriate method.
\vec{F} not conservative so direct is only approach $\vec{r}=\left\langle t^{1 / 2}, t^{-1 / 2}, t\right\rangle$

$$
\begin{aligned}
& \vec{r}^{\prime}=\left\langle\frac{1}{2} t^{-1 / 2},-\frac{1}{2} t^{-3 / 2}, 1\right\rangle \\
& \vec{F}=\left\langle t^{-1 / 2}, t, t^{1 / 2}\right\rangle \\
& \vec{F} \cdot \vec{r}^{\prime}=\frac{1}{2} t^{-1}-\frac{1}{2} t^{-1 / 2}+t^{1 / 2}
\end{aligned}
$$

$$
\int_{1}^{9}\left(\frac{1}{2} \frac{1}{t}-\frac{1}{2} t^{-1 / 2}+t^{1 / 2}\right) d t
$$

$$
\left.\frac{1}{2} \ln (t)-t^{1 / 2}-\frac{2}{3} t^{3 / 2}\right]_{1}^{9}
$$

$\frac{1}{2} \ln 9-3+18+1-\frac{2}{3}$
$\frac{1}{2} \ln 9+16-\frac{2}{3}$
$\frac{1}{2} \ln 9+\frac{46}{3}$

